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Invariant magneto-electric coefficients and invariant piezomagnetic coefficients are obtained for all

the magnetic crystal classes.

1. Introduction

In specifying the values of the tensor components
which represent physical properties of crystals, it is
customary to choose a Cartesian frame of reference
which has a specific orientation relative to the crys-
tallographic axes. Such tensor coefficients, as Nowacki
(1962) points out, do not determine the material con-
stants directly since their values vary with the direc-
tion of the coordinate axes. It is, therefore, natural to
seek to characterize physical properties of crystals by
constants whose values do not depend upon the choice
of the coordinate system, i.e. constants which are in-
variant under all coordinate transformations. Such in-
variants in the case of elastic constants (Srinivasan &
Nigam, 19684, 1969), photoelastic coefficients (Srini-
vasan & Nigam, 1968b) and piezoelectric coefficients
(Srinivasan, 1970) have already been obtained.

In the present paper invariant magneto-electric co-
efficients and invariant piezomagnetic coefficients are
found in the case of various magnetic crystal classes.

2. Form-invariant expressions

The constitutive equations governing a magneto-elec-
tric medium in which the magneto-electric tensor oc-
curs (Dzyaloshinskii, 1959; Hornreich & Shtrikman,
1968; O’Dell, 1970) are

Di=8UEj+alej! (1)
By=piE;+p,H; @

where ¢;; and g;; are the familiar permittivity and per-
meability tensor components respectively, and «;; and
B:,; are the magneto-electric tensor components. Both
«;; and B;; are axial (or pseudo) ¢ tensors (Birss, 1963)
(i.e. they reverse sign under both space and time in-
version) of rank two. The piezomagnetic coefficients
appear in the equations (Bhagavantam, 1966; Mason,
1966)

M= duko'jk s 3

where M, are the components of the magnetization
vector, oy, the components of the stress tensor and
dij, the piezomagnetic coefficients. d, are the com-
ponents of an axial (or pseudo) ¢ tensor of rank three.

With reference to a Cartesian frame of reference
Oxyz, form-invariant expressions (Srinivasan & Ni-
gam, 1968; Srinivasan, 1970) for second and third rank
tensors are given by

ﬁij = vaivbjAab s (4)

diji=VaiVpjVekAape » (5)

where summation is implied by repeated indices, and
v,; etc. are the components of the vectors v, (=1, 2, 3)
which are unit vectors along the crystallographic axes.
Since f;; and d, are pseudo ¢ tensors, Ag and Ag.

are pseudo scalars and also they change sign under
time reversal. That is,

iAab =

[Agpe=

- Aab s
- Aabc s

TAab - ab H
TAabc = Aabc s

where i and T are space inversion and time reversal
operators, respectively. Hence, they may be called
pseudo ¢ scalars. These two facts must be borne in
mind while subjecting equations (4) and (5) to sym-
metry requirements of the magnetic point groups.

3. Invariant magneto-electric coefficients

We will now derive the form-invariant expressions for
B, in the case of 58 of the 90 magnetic crystal classes
in which the magneto-electric effect can be observed
(Bhagavantam, 1966). To obtain similar expressions
for o;; we need only to replace § by « in all the expres-
sions in which f occurs.

Triclinic system
(i) Classes 1,_T

We start with the expression (4)

ﬁ j = vaivbjAab > (6)

where A4,, (a, b=1, 2, 3) are the 9 invariant magneto-
electric coefficients for the classes 1 and 1. The expres-
sions for f,; in the case of other classes are obtained
from (6) by subjecting f,; in (6) to appropriate sym-
metry requirements of the class. For the details of as
to how to feed in the symmetry conditions one may
refer to the earlier work (Srinivasan & Nigam, 1969).
We, therefore, give below only the final results.
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Monoclinic system
(i) Classes 2, m, 2/m

In class 2, v; is chosen as the two-fold axis of rota-
tion and in class m, v,v,-plane is chosen as the mirror

plane. This is the convention followed for these two
classes throughout this paper.

Biy=Biviviy+Bavaivay+ Psvsivsy
+Bav1ivay+Bsvavyy - (7)
(ii) Classes 2, m, 2/m
Biy=B1vaivs;+Bavaivay+ Bsvsiviy+Bavivsy . (8)
Orthorhombic system
(i) Classes 222, 2mm, mmm
Biy=Bviviy+Bavava;+Bavaivsy . )]
(ii) Classes 2_22, 2mm, 2mm, mmm

(10)

Biy=Biviivay+ Bavarvy; -
Tetragonal system

For the tetragonal system v; is chosen as the four-
fold axis of rotation. Since v,, v,, v3 are mutually or-
thogonal in tetragonal crystals, they satisfy the relation

VigViy+ Vaivay+ vV =9y (11)
(i) Classes 4, Z_, 4/m '
:Bu =ﬁ15u +ﬂ2V3iV31 + B3(viiva;— VaiVi) s (12)
where we have made use of (11), and
ﬁ1 =A11 > :82=(A33—A11) » ﬂs =4 -
(i) Classes 422, 4mm, 42m, 4/mmm
Biy=P161;+ B2vsivsy » (13)
(iii) Classes 4, g, 4/m
Biy=Bi(v1iv1;—vaiva) +B(viva+ vaviy) , (14
where
ﬂ1=A11= —Az, ﬁz=A12=A21 .
(iv) Classes 422, 4mm, 2m, 2m, 4/mmm
Biy=Bi(v1iviy—vaivay) - (15)
(v) Classes 422, 4mm, 42m, 4/mmm
Biy=B1ivay—vauvyy) - (16)

Rhombohedral system

For rhombohedral and hexagonal systems we choose
the same type of unit cell in which v, and v, are sep-
arated by 120° and v; is perpendicular to the v,v,
plane. In this case the vectors v,, v,, v, satisfy the iden-
tity :

ViV VaiVay + 3 (Vv +vaivsy)

+%V3;',V3j=%51j; (17)

595

For the rhombohedral system v; is chosen as the three-
fold axis of rotation.

(i) Classes 3,3
Bi;=B16:;+ Bavsivs; + Bs(Viivay — vaiviy) »
where (17) has been made use of, and
ﬁl =%A11 s ﬂz =As— %An ’ ﬁs =%(A12 _A2l) s
Ay = Azz = (Alz + AZI) .
(i) Classes 32, 3m, ?iz

(18)

Biy=B16:;+ Bavsvsy - (19
(iii) Classes 32, 3m, ?m
Biy=B(v1vay—vavyy) - (20)
Hexagonal system
In this system v; is the sixfold axis of rotation.
(i) Classes 6, 3_, 6/m
Biy=PB10:;+Bvsivs; +Bs(vivay —vavey) » 21

where (17) has been utilized, and

ﬂ1=%A11 > ﬂ2=(A33_%A11) > ﬂ3=%(A12“A21) P
Ay =A22=(A12+A21) .

(i) Classes 622, 6mm, 3_2n_1, 6/mmm

Biy=B101;+Byvsvs; . . (22)
(iii) Classes 622, 6mm, 3_2m, 6/mmm
Biy=B1vay—vavy)) - (23)
Cubic system
(i) Classes 23, m3, 432, 43m, m3m
ﬂu '—‘/35.‘1 ) @9

where (11) has been used, and f=A4,; =A4;,= A33.

4, Invariant piezomagnetic coefficients

Regarding the choice of rotation axes and mirror
planes in various crystal systems, we adopt the same
convention as in the last section. Non-vanishing piezo-
magnetic coefficients exist only in 66 of the 90 magnetic
crystal classes (Bhagavantam, 1966).

Triclinic system
(D) Classes 1, T
We insert the condition d;;,=d,; in (5) and obtain

(25)

where A= Aa (a, b, c=1, 2, 3) are the 18 invariant

piezomagnetic coefficients for the classes 1 and T.
Once again we furnish below only the final results.

The method. of imposing the symmetry conditions on

di!k =VaiVpVerAave 5
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(25) is the same as described by Srinivasan & Nigam
(1969).

Monoclinic system
(i) Classes 2, m, 2/m

d;jie=d1v3:v3V3+ A(V13V1V3 + V1Va Vi) + dsVaive Vi
+ds(vava Vst Vaivavar) + dsVaivaVa
+ds(v1iVaVak + ViVaVar) + d1(V2iVa i+ Vaivi Vi)
+dg(VaiV1 Vo + Vaiva i) - (26)

(i) Classes 2, m, 2/m
dije=a Vi Vit davava Vot ds(Vivi Vot Viva Vi)

+dgvavi i+ ds(VaiVa Vi + VavigVar) + dsViVa Vo
+d7(v3V3 Vit VaiviVae) + dgViva vk

+ dy(v3iVs Vo + V3VaVa) + dioVaiva vk - (27
Orthorhombic system
(i) Classes 222, 2mm, mmm
dije=di(v1va Vs vivava) + do(Vava Vi + Vaiviva)

+ ds(VaviVar+ Vaivavae) - (28)

(ii) Classes %mm, 2mm, 222, mmm

A= A1V31V3;v3 4+ do(VyVy Vs + Vi Vs Vi) + dsva vy v

+di(vaiva Vst Vaivavan) + dsVavasVak - (29
Tetragonal system
(i) Classes 4, 4, 4/m
dije=dv3v3V3+ Ay (V301 + V3 0u) + d3v3i0
+d[va(viva; — vavy) + v3 (Vv —vavi)l, - (30)

where we have made use of (11) and
d1 = (A333 -24,5— Asu) b dz =Ay13=Azs »
d3=A311 = A3, d4=A123 .
Suppose we choose a Cartesian system whose x, y, and
z axes coincide with vy, v,, v; respectively, then (30)
gives the correct number of non-vanishing coefficients
d, ;. satisfying the relations (Bhagavantam, 1966)
d3u =d322 = ds ’ d333 =d1 + 2d2 +ds,
d123= —d231=d4 » d113=d223=d2 ’ (31)
where we have used the fact that for the special (which

is also the conventional) choice of the Cartesian sys-
tem made v,;=v,,=vy;=1 and all others vanish.

(ii) Classes 422, 4mm, 3211, 4/mmm

dijk = dlv3iv3jv3k + dZ(VSkalj + v3151k) + d3v316jk . (32)
(iii) Classes 4, g, 4/m
dije=di[v3(viv1y—vavay) + V3 V1V — V2V
+dv3i(Vivie— Vava) + dslva(vivas + vavyy)
+v3;(viva+ Vvl + davai (Vv +vava) . (33)
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(iv) Classes 422, 4mm, Z_2m, 7&2@, 4/mmm

A= ds[va(V1ivay + vaivey) + V3 (Ve + vaivid]

+dgv3(viva+ VoV - (34)
(v) Classes 422, 4mm, 42m, 4/mmm
dyji=d[vailv1v2; — vaiviy) +va(Viiva — VaiVi)] - (35)
Rhombohedral system
(i) Classes 3,3
dije=dyv3v3 V3 + do(viidi + v3;00) + d3v3id i
Fda[va(v1iv2) = Vaiviy) + V3 (Vivac— v2ivi))
+ ds("uvuvlk — V2V Vo +ViiVijVar + ViiVa Yk
+v2uvivie) T ds(Vaiva Vo — Visvi Ve + Vaiva ik
+ VoV Vot VigVavae) (36)
where we have used (17), and
dy=As33—3(Ay23+ Ars) — 34312
dz = %(AIZS + A231) » d3 = %Aslz ’
d4 =%(A123 - A231) s ds =A112, d(, = Ay, .
(ii) Classes 32, 3m, 3m
A= A1v31v3;Va+ do(vadyy 4 v30u) + d3v3id i
+ds(2v1v1 V= 2V20V2 Ve + ViV Vot ViV ik
F V2V Vi — VaVa Ve — VaiVigVae— ViVagVax) - 37
(iii) Classes 32, 3m, 3m
dyjie=da[vai(v1eva; — vaive ) + Vs (Vo — Vaiva]
+ds(viviVa F ViVa Vit Vavi Vit Vaiva Vi
F VoV Var+ VigVasVa) - (38)
Hexagonal system
(i} Classes 6, 6, 6/m
Ay =33Vt da(v3idy + v305) + dsvaid i
+da[va(viivay — vavey) + V3 (Vv — vavi)l,  (39)

where (17) has been utilized, and

dl = A3z — %(AIZS + A231) - %ASIZ ’
dy=3(A123+ Az31), ds=As2, da=%(A123— A2 -

(i) Classes 622, 6mm, 62m, 6/mmm

dijk =d,vy V3V + dy(vady; + V3;0u) + d3v3i0j - (40)
(iii) Classes 6, 6, 6/m
dip= dl(vlivljvlk = V3V Var FV1iV1Vok + ViV Vik

F V2V Vik) + B(VaVaVae— ViVi Vit Vaiva ik

+ V2V Vo VigVasVax) - 41)
(iv) Classes 622, 6mm, 62m, 62m, 6/mmm
i =di(V1V13V2k+ V1iVa Vet V2V Viet Vava Vi

+ VoV Vot ViVa ar) - 42)
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(v) Classes 622, 6mm, 62m, 6/mmm

dyjie= A3 (V25— Vav1) + V3, (viva — vaivid] - (43)
Cubic system
(i) Classes 23, m3, 432, 43m, m3m
dije=dV1V25V3k+ V1iV3Vak + VaiVa Ve + VaiVeVa
+ Va3V Vo + VaiVaVik) - (44)

The form-invariant expressions for f;; and d;j ob-
tained in the case of various magnetic crystal classes
are referred to a Cartesian coordinate system with
respect to which the triad v,, v,, v; has an arbitrary
orientation. However, when conventional choice (Bha-
gavantam, 1966) of the Cartesian system is made, the
form-invariant expression furnished above gives the
appropriate number of non-vanishing components
d, 1, as demonstrated in the case of (30). A similar check
can be made in the case of expressions for §;; and
d, ;. corresponding to other classes.
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Previously the concept of ferroelasticity, introduced by Aizu, has only been studied in connexion with
classical point groups. In this paper the use of this concept is extended to the Shubnikov point groups;
this is important in connexion with ferroelectric phase transitions and various kinds of magnetic phase
transition. Tables are given which enable all ferroelastic species to be identified.

1. Introduction

The concept of a ‘ferroelastic’ crystal was introduced
by Aizu (1969) and it is relevant to the discussion of
displacive phase transitions. By the term ‘displacive’
phase transition we mean a phase transition which
does not involve any major structural rearrangement
of the atomic positions in a crystal, but involves only
rather small displacements of the equilibrium positions
of the atoms. These displacements will generally be
accompanied by a reduction in the symmetry of the
crystal and displacive phase transitions may also be
ferroelectric transitions but need not necessarily be
so. The concept of ferroelasticity, its relationship to
the phenomenon of ferroelectricity, and the examina-
tion of the symmetries of ferroelastic crystals described
by Aizu (1969) was restricted to materials with the
symmetry of one of the 32 classical point groups. It

seemed to be desirable to extend Aizu’s work to the
Shubnikov point groups for two reasons. First, there
are many possible ferroelectric symmetries which are
described by Shubnikov point groups (Neronova &
Belov, 1959; Ascher, 1970; Schelkens, 1970; Zheludev,
1971). Secondly, it would seem to be profitable to ex-
tend the use of the concept of ‘ferroelasticity’ in con-
nexion with magnetic phase transitions, which would
also involve the use of Shubnikov point groups.

In many magnetic crystals the onset of magnetic
ordering is accompanied by a magnetostrictive distor-
tion of the crystal structure, with a consequent reduc-
tion in the symmetry of the crystal. There may be
several possible choices of direction for the preferred
orientation associated with the magnetic ordering, with
the resultant occurrence of magnetic domains even
within a crystal that was a single crystal in its non-
magnetic phase. The relevance of the concept of ferro-



