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Invariant magneto-electric coefficients and invariant piezomagnetic coefficients are obtained for all 
the magnetic crystal classes. 

1. Introduction 

In specifying the values of the tensor components 
which represent physical properties of crystals, it is 
customary to choose a Cartesian frame of reference 
which has a specific orientation relative to the crys- 
tallographic axes. S~ch tensor coefficients, as Nowacki 
(1962) points out, do not determine the material con- 
stants directly since their values vary with the direc- 
tion of the coordinate axes. It is, therefore, natural to 
seek to characterize physical properties of crystals by 
constants whose values do not depend upon the choice 
of the coordinate system, i.e. constants which are in- 
variant under all coordinate transformations. Such in- 
variants in the case of elastic constants (Srinivasan & 
Nigam, 1968a, 1969), photoelastic coefficients (Srini- 
vasan & Nigam, 1968b) and piezoelectric coefficients 
(Srinivasan, 1970) have already been obtained. 

In the present paper invariant magneto-electric co- 
efficients and invariant piezomagnetic coefficients are 
found in the case of various magnetic crystal classes. 

2. Form-invariant expressions 

The constitutive equations governing a magneto-elec- 
tric medium in which the magneto-electric tensor oc- 
curs (Dzyaloshinskii, 1959; Hornreich & Shtrikman, 
1968; O'Dell, 1970) are 

D i = e , j E j  + o~,~Hj , (1) 

B, =/~,jEj +~,fl~, (2) 

where etj and/~j  are the familiar permittivity and per- 
meability tensor components respectively, and ~ j  and 
fl~j are the magneto-electric tensor components. Both 
~ j  and fl~j are axial (or pseudo) c tensors (Birss, 1963) 
(i.e. they reverse sign under both space and time in- 
version) of rank two. The piezomagnetic coefficients 
appear in the equations (Bhagavantam, 1966; Mason, 
1966) 

M l  = dtjkajk , (3) 

where M~ are the components of the magnetization 
vector, ajk, the components of the stress tensor and 
duk,  the piezomagnetic coefficients, d~jk are the com- 
ponents of an axial (or pseudo) c tensor of rank three. 

With reference to a Cartesian frame of reference 
O x y z ,  form-invariant expressions (Srinivasan & Ni- 
gam, 1968; Srinivasan, 1970) for second and third rank 
tensors are given by 

fl~j = Vo~vbjAab , (4) 

d~jk = V~Vb~ v~kA abe, (5) 

where summation is implied by repeated indices, and 
vat etc.  are the components of the vectors va (a = 1, 2, 3) 
which are unit vectors along the crystallographic axes. 
Since ill1 and d t j  k a r e  pseudo c tensors, A~b and A~b~ 
are pseudo scalars and also they change sign under 
time reversal. That is, 

iAab = -- Aab , TAab = - -  A a b  , 

iAab¢ = - A,,b¢ , TA,,bc = - A,,~,c , 

where i and T are space inversion and time reversal 
operators, respectively. Hence, they may be called 
pseudo c scalars. These two facts must be borne in 
mind while subjecting equations (4) and (5) to sym- 
metry requirements of the magnetic point groups. 

3. Invariant magneto-electric coefficients 

We will now derive the form-invariant expressions for 
fl~j in the case of 58 of the 90 magnetic crystal classes 
in which the magneto-electric effect can be observed 
(Bhagavantam, 1966). To obtain similar expressions 
for ct~j we need only to replace fl by c~ in all the expres- 
sions in which fl occurs. 

Tricl in ic  s y s t e m  

(i) Classes 1, 1 

We start with the expression (4) 

fl~j = v,,~vbjA,,b , (6) 

where Aab (a, b = 1, 2, 3) are the 9 invariant magneto- 
electric coefficients for the classes 1 and T. The expres- 
sions for fl~j in the case of other classes-are obtained 
from (6) by subjecting fl~j in (6) to appropriate sym- 
metry requirements of the class. For the details of as 
to how to feed in the symmetry conditions one may 
refer to the earlier work (Srinivasan & Nigam, 1969). 
We, therefore, give below only the final results. 
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Monoclinic system 

(i) Classes 2, m, 2/m 

In class 2, v3 is chosen as the two-fold axis of rota- 
tion and in class m, vlv2-plane is chosen as the mirror 
plane. This is the convention followed for these two 
classes throughout this paper. 

~lj  = ~l  VltVIj "~- ~2V21l)2j + ~3V3 i])3J 
"~-~4VIiV2j'3t-~sV2iVIj. (7) 

(ii) Classes 2, m, 2/m 

~ij=~lV2iV3j'q-~2V3iV2j'3t-~3V3iV1j"~4])li]I3j. (8) 

Orthorhombic system 
(i) Classes 222, 2ram, mmm 

~tj  ~- ~lVllV1J "~ ~2 V2IV2j "q- ~3 V3iV3J (9) 
(ii) Classes 222, 2mm, 2mm, mmm 

~lj  =1~1Vll]12j "~ ~2 V2l]]lj " (1 O) 

Tetragonal system 

For the tetragonal system va is chosen as the four- 
fold axis of rotation. Since vl, v2, va are mutually or- 
thogonal in tetragonal crystals, they satisfy the relation 

"gllVlj "~- V21V2j "31- V3iV3j = 5lj . (11) 

(i) Classes 4, 4, 4/m 

~U=/~I~U+P~V~V~j+P3(Vl~V,j-- V~iVlj) , (12) 
where we have made use of (11), and 

ill=All, flz=(A33--Atx), f13=A12 • 

(ii) Classes 422, 4ram, -42m, 4/mmm 

flu = fltfiu + flzv3tv3, , (13) 
(iii) Classes 4, 4, 4/m 

P.=Pl(Vl~Vlj--V~V2j)+~(Vl~V2+JVZ~Vlj), (14) 
where 

fll  ---- A l l  --- - - / t 2 2 ,  ~2---- Al2---- A21.  

(iv) Classes 422, 4mm, -42m, 42m, 4/mmm 

flu = fll(vuvlj - v2,v2,). (15) 

(v) Classes 422, 4ram, -42m, 4/mmm 

~lJ = ~(VIIVZJ -- V2/V1J) • (16) 

Rhombohedral system 

For rhombohedral and hexagonal systems we choose 
the same type of unit cell in which vl and v2 are sep- 
arated by 120 ° and va is perpendicular to the vxv2 
plane. In this case the vectors vl, v2, v3 satisfy the iden- 
tity 

vuv u + v2~v2j + ½(vuv2j + v2~vu) 
• +¼va~vaj=¼gu-: (17) 

For the rhombohedral system v3 is chosen as the three- 
fold axis of rotation. 

(i) Classes 3, 

flU=fllgU+fl2Va~V3j+fla(VuV2j--VzlVl~) , (18) 

where (17) has been made use of, and 

A l l  ----- A22 = (AI2 + A2t) • 

(ii) Classes 32, 3m, 3m 

~ij  = ~l  Oij -~ ~21131V3J . (19) 
(iii) Classes 32, 3m, 3m 

~l j=~(Vl lV2j  - V2IV1j ) . (20) 

Hexagonal system 
In this system v3 is the sixfold axis of rotation. 

(i) Classes 6, 6, 6/m 

~lj=~l(~ij'lt-~2V3lV3j"~ ~3(VliV2j-- V21Vlj) , (21) 

where (17) has been utilized, and 

Pl=kA., /~2=(A33-¼A13, P3=½(A12-A2d, 
All = A22 = (AI2 q- A2I). 

(ii) Classes 622, 6ram, ~2m, 6/mmm 

~lj  : ~l(~ lJ "31- ~2 V3lV3j . (22) 
(iii) Classes 622, 6ram, 62m, 6/mmm 

fllJ =/~(VllV2J- V2IV1J)" (23) 

Cubic system 
(i) Classes 23, m3, 432, 43m, m3m 

f l u  = f lS  U , (24) 
where (11) has been used, and fl=Ait=A22=Aaa. 

4. Invariant piezomagnetic coefficients 

Regarding the choice of rotation axes and mirror 
planes in various crystal systems, we adopt the same 
convention as in the last section. Non-vanishing piezo- 
magnetic coefficients exist only in 66 of the 90 magnetic 
crystal classes (Bhagavantam, 1966). 

Triclinic system 
(i) Classes 1, T 

We insert the condition duk = dtkj in (5) and obtain 

duk = ValVbjVckAabc , (25) 

where Aabc =Aacb (a, b, c = 1, 2, 3) are the 18 invariant 
piezomagnetic coefficients for the classes 1 and T. 

Once again We furnish below only the final results. 
T-he method of imposing the symmetry conditions on 
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(25) is the same as described by Srinivasan & Nigam 
(1969). 

Monoclinic system 

(i) Classes 2, m, 2/m 

d~jk = d~vaiv~v~ + d~(v~iv~Vak + vuvajv~) + dava~v~jv~ 
+ d4(v2t11M113g "q- 112iV3jV2k) "a t- d~va~v2~v2k 
+ d6(v~vz~v3~ + v~v3~vz~) + dT(vz~v~v~ + v2~vljvz~) 
+ da(va~v~jv2k + V3~V2~Vlk). (26) 

(ii) Classes 2, m, 2/m 

d ~  = d~v~,v~v~ + dzvz~vz~v2~ + dz(v~v~vz~ + v.v~jv~) 
+ d4v2~v~v~ + d~(v2iv2~v~ + v2~v~vz~) + d6v~v,~v~ 
+ d7(v3~v3~v~ + v~vtjv~) + d~Vl~V~Vz~ 
+ d9(v3t113j112k dr- V31112jV3k ) "q- dlovziv2jv3~. (27) 

Orthorhombic system 
(i) Classes 222, 2ram, mmm 

d~=d~(vx~v~v~ + v~v~v~)+ dz(v~v3~v~ + v~v~v~) 
+ da(v~vx~v2~ + V3~V2jV~k). (28) 

(ii) Classes 2mm, 2mm, 222, mmm 

d~j~ = d~v~vsjvs~ + dz(v~v~jv3~ + v~vsjv~) + dzv~v~v~ 
"t- d4( v2t v2j113k -{- V21113j112k ) q" d5113i VzjVzk . (29) 

Tetragonal system 

(i) Classes 4, 4, 4/m 

d ~  = d~ v3~v~v~ + d ~ ( v ~ j  + v~,~) + d~v3~ 
a t-d4[vak(vttv2J- V2~Vlj ) +  V3j(VltV2~-- V2lVlk)], (30) 

where we have made use of (11) and 

dl=(Aaaa-2At~a-AaxO, d2=A~xa=Az2a, 
d3=A3H=Aaz2, d4=A~23. 

Suppose we choose a Cartesian system whose x, y, and 
z axes coincide with v~, v2, Va respectively, then (30) 
gives the correct number of non-vanishing coefficients 
d~j~ satisfying the relations (Bhagavantam, 1966) 

da~=da22=da , d3a3=d~ + 2d2 +da , 
d~23=-d23~=d,, d~t3=d223=d2, (31) 

where we have used the fact that for the special (which 
is also the conventional) choice of the Cartesian sys- 
tem made 11H=v2z=Va3 = 1 and all others vanish. 

(ii) Classes 422, 4ram, 42m, 4/mmm 

dok --- dlvaiVaj113~ -at- dz(v3ld~t/+ 113jt~tg) + d3vai6jk . (32) 

(iii) Classes 4, 4, 4/m 

d ~  = d~[v~(v~v.-  v~v~) + v3~(v~vx~- v~v~)] 

+ d2v3~(v~jvlk -- V2~V2k) + d~[V~k(V~V2~ + V2~V~) 
+ Va~(V~tV2k + Vz~Vxg)] + d4V3~(V~Vzk + Vz~V~k). (33) 

(iv) Classes 422, 4mm, 7~2m, -42m, 4/mmm 

d~jk = d3[v3k(vl~v2j + v2~vlj) + v3j(vltvzk + v2iv~k)] 
+ d4vai(vlj112k + V2jVlk). (34) 

(V) Classes 422, 4mm, 42m, 4/mmm 

dij k = d[Vak(VliV2j -- V2iVlj ) -}- V3j(VliV2k -- V2tVlk)] . (35) 

Rhombohedral system 
(i) Classes 3, 

dlj~ = da va~vajvak + d2(va~6ij + v3fiik) + davai6jk 
27 d41113k(111iV2j-- V2i111j) + VZj(llliV2k -- V2i111k)] 

+ ds(vlivljvlt ,  -- V2iV2jV2k + Vl ~V~j112k + VaiV2j11~k 

"q- V2t111jVlk ) 21- d6(122il~2jV2k -- VliVlj~'lk -~ 112i112jVlk 

+ v2lvljv2k + VuV2jV2k), (36) 

where we have used (17), and 

d, = A33~- 3(Ax,3 + A,33- ~.43~, 
d~=~(A~+A,~3 d~= , ~A312 , 

d4=½(Aa2a-A23t), ds=A1~2, d6=A22~. 

(ii) Classes 32, 3m, 3m 

d~jk = dl v3~v3jv3k + d2(VakC~j + Vafi~k) + dav3~fijk 
+ ds(2vuvxjv~k- 2V21V2jV2k + VliVljV2k + UllV2jVlk 

+ V21V1j111k - -  VE1112j111k - -  1121VljV2k - -  Vl tV2jV2k ) , (37) 

(iii) Classes 32, 3m, 3m 

d~g = d4[va~(vuv2~- v2tvx~) + Vaj(VI~V2k- V2~Vxu)] 
+ ds(VllV1jV2k -~- 111 ll~2jVlk -q- V2l'l~lj]Ilk -~- 112iV2jVlk 

+ v2~v~jv2~ + v~v2jv2~). (38) 

Hexagonal system 
(i) Classes 6, 6, 6/m 

dij  k = d11131Vzj113k + d2( V3kt~ tj -]- Va jt~ ik ) + d3 v3i6 jk 

+ d~[Vak(v~v2~-- v2~vlj) + 113~(V~V2k-- V2~V~k)], (39) 

where (17) has been utilized, and 

d~= A33~-)(A 1~ + ~4~)-  ~ .4~,  
d2=~2(A~zaq-A23~),  da=A312 ,  d 4 = ½ ( A ~ 2 a - A 2 a ~ ) .  

(ii) Classes 622, 6mm, 62m, 6/mmm 

d~j~, = dxva~v3jva~ + d2(Vakfi~j + V3j6~k) + d3va~6jk . (40) 

(iii) Classes 6, 6, 6/m 

d i j k  = dx(v~v~vak - ]t2iV2jV2k "q- 111iVljV2k "31-111 i112j111k 

"At- V2l]Iljl~lk ) -Jr- d2(1)2tV2j112k - -  V 11111jVlk 21- 112ilIEjl~lk 

+ V2~V~V2k + Vx ~V2~V2k). (41) 

(iv) Classes 622, 6ram, 62m, 62m, 6/mmm 

dlj  k = dl(vl ivl jv2k + 111t112j~'lg "11- V2i l I l jV lk  "q- ]12t112j111g 

+ v2~vljv2~ + V~Vz~V2R). (42) 
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(v) Classes 622, 6mm, 62m, 6/mmm 

di jk=d[Y3k(1J l lY2J- -Y2iY l j )+  V3j(lllllJ2k--V2iVlk)]. (43) 

Cubic system 
(i) Classes 23, m3, 432, 43m, m3m 

di j  k = d(Yl iv2jy3k --~ l~liV3jV2k • ]lZilI3jVlk -q- IJ2ilIljV3k 
"~- IJ3IVIjVEk "Jw l)3il)2j•lk ) . (44) 

The form-invariant expressions for fl~j and d~jk ob- 
tained in the case of various magnetic crystal classes 
are referred to a Cartesian coordinate system with 
respect to which the triad vl, v2, va has an arbitrary 
orientation. However, when conventional choice (Bha- 
gavantam, 1966) of the Cartesian system is made, the 
form-invariant expression furnished above gives the 
appropriate number of non-vanishing components 
dtjk, as demonstrated in the case of(30). A similar check 
can be made in the case of expressions for fl~j and 
d~jk corresponding to other classes. 
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Previously the concept of ferroelasticity, introduced by Aizu, has only been studied in connexion with 
classical point groups. In this paper the use of this concept is extended to the Shubnikov point groups; 
this is important in connexion with ferroelectric phase transitions and various kinds of magnetic phase 
transition. Tables are given which enable all ferroelastic species to be identified. 

1. Introduction 

The concept of a 'ferroelastic' crystal was introduced 
by Aizu (1969) and it is relevant to the discussion of 
displacive phase transitions. By the term 'displacive' 
phase transition we mean a phase transition which 
does not involve any major structural rearrangement 
of the atomic positions in a crystal, but involves only 
rather small displacements of the equilibrium positions 
of the atoms. These displacements will generally be 
accompanied by a reduction in the symmetry of the 
crystal and displacive phase transitions may also be 
ferroelectric transitions but need not necessarily be 
so. The concept of ferroelasticity, its relationship to 
the phenomenon of ferroelectricity, and the examina- 
tion of the symmetries of ferroelastic crystals described 
by Aizu (1969) was restricted to materials with the 
symmetry of one of the 32 classical point groups. It 

seemed to be desirable to extend Aizu's work to the 
Shubnikov point groups for two reasons. First, there 
are many possible ferroelectric symmetries which are 
described by Shubnikov point groups (Neronova & 
Belov, 1959; Ascher, 1970; Schelkens, 1970; Zheludev, 
1971). Secondly, it would seem to be profitable to ex- 
tend the use of the concept of 'ferroelasticity' in con- 
nexion with magnetic phase transitions, which would 
also involve the use of Shubnikov point groups. 

In many magnetic crystals the onset of magnetic 
ordering is accompanied by a magnetostrictive distor- 
tion of the crystal structure, with a consequent reduc- 
tion in the symmetry of the crystal. There may be 
several possible choices of direction for the preferred 
orientation associated with the magnetic ordering, with 
the resultant occurrence of magnetic domains even 
within a crystal that was a single crystal in its non- 
magnetic phase. The relevance of the concept of ferro- 


